
SDP 19 Team 26, FPR Report 1


Abstract— Checkout aisles in grocery stores are inefficient.

There are better ways to process transactions that don’t involve
waiting in long lines for a cashier. We propose Zipcart: a system
that employs computer vision techniques to keep track of the items
in an order as a customer shops. It employs a centralized data store
on public cloud infrastructure that contains order and item
information. A smartphone interface is used by shoppers to audit
their order and the balance of their selected items.

I. INTRODUCTION

Of all parts of the grocery shopping experience, the checkout
process is the most needlessly long and frustrating. Once
shoppers are done selecting the items they wish to purchase,
they queue up for service from cashier attendants. This entails
iteratively aligning the barcodes of items with a scanner,
bagging the groceries, and navigating the point of sale (POS)
terminal’s interface to process payment.

Maintaining order information and payment processing are
both tasks of the digital system. The cashier’s part in this is
helping the system identify each item in the order and selecting
the appropriate means for payment. Using computer vision
techniques, this first task could also be automated, as a system
can be trained to recognize the items that shoppers select
through passive observation. The second task could be
entrusted to the shopper, so long as the supported methods are
digital-friendly (nowadays, even checks can be processed by
digital systems using computer vision).

There are many competing solutions in this space. Amazon
Go [1] uses a large amount of cameras embedded in their stores
to track what customers take out of the store, charging them
accordingly. This approach is very costly and requires the type
of infrastructure and technical expertise that only a company
like Amazon has. Peapod [2] is one of a class of websites that
offer grocery delivery as a service. Consumers avoid trips to the
store at the expense of service charges. Additionally,
articulating which items (out of a similar class of items) can be
difficult, given the user interface and things like sales and
coupons for shoppers to consider. Both solutions require large
changes to the landscape of the grocery store. For Amazon Go,
it’s the addition of cameras and sophisticated infrastructure to
process video feeds. Sites like Peapod either need to employ
warehouses for groceries or alter the layout of stores to make it
more efficient for “grocery pickers” to sweep through the

R. Henriquez Jr. <ricardohenri@umass.edu>
R. Lagasse <rplagasse@umass.edu>
J. Azevedo <jazevedo@umass.edu>

landscape and fulfill orders. Zipcart necessitates retrofitting
shopping carts – not the store. This keeps the customer
shopping experience relatively unchanged and makes the cost
of renovation less expensive in terms of cost and time.

II. DESIGN

A. Overview

Our project seeks to present a more efficient alternative to the
checkout aisle. It starts with a system embedded onto every
shopping cart, with a camera mounted onto it. That camera
identifies items as they enter or exit the cart by reading their
barcodes. Once the system reads the barcode, it passes that
information onto a service running in public cloud
infrastructure (e.g. Amazon Web Services), which keeps track
of orders and item information in a database. The shopper will
use an interface on their smartphones (e.g. an Android
application) to audit the order balance and items selected as they
shop. This also enable us to process payments through a PayPal
service called Braintree, which gives the user multiple payment
options.

There are some interesting challenges that arise when trying
to utilize computer vision for this purpose. First, we need to
scan the barcodes of items as they enter the cart. Since we do
not require shoppers to put items into the basket in a specific
way, they enter the cart at unpredictable angles and speeds, and
yet we still must be able to read the barcodes with a high rate of
accuracy. Furthermore, the barcodes must be read in a timely
manner. Computer vision algorithms are highly resource-
intensive. The system running these algorithms has the heavy
workload of processing image frames and detecting not only the
barcode but direction of each item for the duration of each
shopping trip. This must all be done nearly in real-time, as large
latencies may confuse or upset shoppers who expect to see the
current state of their orders on the interface as soon as possible.

As we are not acting as store facilitators, we do not maintain
our own database of items and their relevant information, yet
we want our system to be able to scan and account for any item
with a barcode. As such, another one of our challenges involves
getting this information from an external source quickly. When
the web service happens upon an item it has no information on,
it must request for and cache it in a manner that complies with
the real-time constraints of our system. Lastly, our systems
must operate over the course of entire business days. To avoid

Ricardo Henriquez, EE Ryan P. Lagasse, CSE Jonathan Azevedo, CSE

Zipcart

 2

requiring maintainers to charge carts throughout the day, we
utilize the mechanical energy exerted by shoppers pushing the
cart to power our system. This necessitates the design of an
efficient subsystem that can generate an adequate amount of
power to sustain our system with the mechanical potential it
sees.

To meet the expectations of each of our stakeholders, we set

the following project requirements:

1. Recognize barcode as item is placed in cart
2. Detect when item is removed from cart
3. Display item list and current balances
4. Detect unscanned items to prevent theft
5. Sustain power for a full business day

To create this design, we set a number of assumptions about

our project. These are our specifications:

1. One item entered or removed per two-second interval
2. Barcode surface must be reasonably flat
3. Maximum system latency of four seconds
4. Eighteen hours of continuous operation

Residing in the appendix is an enhanced block diagram

made up of two figures that illustrate the topology of our
system in addition to the function of each component and the
relationships between them.

B. Power

We want our system to be self-sufficient to avoid having to
plug it into a wall outlet – having to do so multiple times over
the course of a day would be impractical. Our approach is to
take advantage of the mechanical motion of the shopping cart
and convert that into electrical energy which in turn will charge
our lithium ion battery. The project requirements, state that our
system must operate for a full business day, which means the
power generated must be greater than the power consumed.
Figure 1 shows the schematic diagram of our power circuit. The
diagram is separated into four pieces which are the stepper
motor, full-wave rectifier, voltage regulator, and the Adafruit
Powerboost 1000C [3].

The first piece is the Vexta PX245-02B-C8 stepper motor
which is two-phase and rated each at 6V and 0.8A. We decided
to use a stepper motor because they work best at low speeds and
in our application, the average walking speed of a customer is
3mph which equates to roughly 200RPM. Heading into MDR,
we only use one stepper motor as a proof of concept, which
plays the role of converting mechanical energy into electrical
energy. The power generated by a stepper motor is proportional
to the rotational speed of the motor shaft in the form of AC.

The second piece is converting the AC generated into DC and
we do this through a full-wave rectifier made up of 1N5818
schottky diodes [4]. Our stepper motor has two phases, each
phase must be rectified which is shown in Figure 1. We added
a 100uF capacitor at the output of the rectifier to help reduce
voltage variations.

This rectified voltage then feeds into our DE-SWADJ
switching regulator [5] which takes the input voltage between
the acceptable voltage range of 3V-30V and efficiently converts
it into a stabilized 5V output. We chose this regulator because
it has the capability to step-up or step-down the input voltage,
which makes it an ideal choice in our application since the
voltage the stepper motor generates varies dependent on speed.
This regulator can source up to 1.5A which gives us plenty of
headway, since we do not expect to generate more than 1A.
Figure 2 shows the efficiency of this regulator sourcing current
at different input voltages. In our case, the efficiency depends
on how much voltage we generate at the input which is
dependent on the speed of the shopping cart.

The last piece is the Adafruit Powerboost circuit, which has
several necessary features. It has a built-in load-sharing battery
charger circuit which allows the Raspberry Pi to run while
charging the lithium-ion batteries. It also features a built-in
battery protection circuit which is necessary when charging
lithium-ion batteries to protect from overcharging them. This
circuit can recharge at a max rate of 1A and allows the battery
to output more than 1A if required.

To build this power generating circuit, we had to leverage the

information we learned in ECE 211 and 212 to understand the
general rules of putting together a circuit and the role each
element plays. ECE323 and ECE324 equipped us with the
knowledge to understand full-wave rectifiers and voltage
regulators.

A requirement we had to satisfy was designing and using a
printed circuit board. We designed our printed circuit board to
wire four stepper motors in parallel in case more power was

Figure I: Power circuit diagram

Figure II: DE-SWADJ Switching Regulator Efficiency

 3

needed but we produced plenty of power using only two motors.
Refer to Figure 3 to see top view of our PCB design.

For demo day, after all pieces were soldered onto the PCB,
we generated 3.08W with two motors in parallel. See Figure IV
to see how much power is generated at certain speeds.

It is worth mentioning that the Raspberry Pi consumes
1.4W/h while idling and 2.4W/h under a normal workload, refer
to Figure V. We obtained these values by taking measurements
with a KILL-A-WATT power strip. Overall, we generate more
power than what is consumed. Also, we decided to use a
switching regulator because it is more efficient at converting
high input voltages and stepping down to 5V output. Figure VI
shows a significant difference in the amount of current sourced.
Although both produced same amount of power, more current
is important because it charges the battery at a faster rate.

C. Optics & Detection

The detection subsystem is the main portion of our embedded
system, which reads the barcodes of items as they enter the cart.
The detection subsystem consists of two parts: optics and
software. The optical part includes a camera placed on the far
side of the cart facing inwards. Once an item enters the system
and is seen by the camera, the detection algorithm processes the
video input, using image processing techniques to locate the
barcode in the image and extract the UPC code from it.

 The optics system is the most important part of the detection
subsystem as it is the greatest bottleneck. The camera must be
able to capture the barcode in its frame no matter orientation or
distance in respect to the camera. Cameras have a limited field-
of-view (FOV), which the barcode must be within to have a
chance of being recognized. The camera must also have a high
enough resolution to detect the spacing between the lines of the
barcode. Since it has to do this at variable lenses it must also
have an adjustable focus. Autofocus cameras take too long to
find the correct focal length, and an adjustable focus gives us
control in the area of the cart we want to focus on. Another
requirement for the camera is to be compatible with our
software libraries, which all cameras connecting to the
Raspberry Pis CSI interface should be. When using the
Raspberry Pi there are limited camera alternatives for its CSI
interface, because of it we chose the best one we saw fit which
was the Kuman 5MP camera [11] with adjustable focus that can
stream 1080p at 30 frames-per-second (FPS).
 For implementing computer vision, we use two libraries
jointly. The first being OpenCV [12] an extensive and powerful
open source computer vision library which provides us with a
plethora of visual processing tools. The second is ZBar [13] -
the library we use jointly with OpenCV to detect barcodes
entering our video frame and to extract the UPC code to send to
our database.

Detection Procedure
1. Request an order to be made in the database
2. While True:

a. Detect barcode in video stream from optics system
b. Extract UPC code from barcode using PyZBar
c. Sends UPC code to cloud service

To get the detection system working as close to real-time and

as efficiently as possible, we made a number of key revisions to
it after MDR. The most notable was spending the week of
spring break to rewrite the entire detection system in C++ from
Python 3. We did this because Python programs cannot be
parallelized on multiple CPU cores due to an implementation
mechanism called the Global Interpreter Lock (GIL). Luckily,
the same software stack was compatible with C++ so we were
able to reuse the code we wrote in spirit.

In order to simplify development on some features, we
continued to use Python for some system functions. Using
interprocess communication, the C++ program would call one

Figure III: PCB Design

Figure IV: Power Generated using Two-Motors

Figure V: Raspberry Pi Power Consumption

Figure VI: Regulator Comparison

 4

of our Python “submodules” to make a network request or
manipulate the LEDs, for instance. Closer to FPR, we made
combined our individual submodules into a server that would
listen on a specified port for requests by the C++ client. The
server would parse them, and make network requests and
actuate the LEDs in a dynamic manner instead of calling each
submodule separately in order to create the same effect. A
larger reason for this change of implementation was to make the
submodule stateful. For instance, we solved our “double-scan”
issue (when multiple threads pick up the same barcode in
consecutive frames and try to make multiple requests) by
maintaining a timestamp of the latest scan for each barcode, and
only marking scans of the same barcode as valid if they were
made some arbitrary time (a threshold value) after the latest
one. By maintaining state, we were also able to make features
such as flashing green or red depending on the success of
network requests easier to develop.

With the advantage of parallel processing came the issue of
synchronizing multi-threaded operations. Through trial and
error, we discovered that using a queue to store camera frames
for processing meant that the system would begin to process
older and older data until it was totally out of sync. In order to
combat this, we used a cyclic buffer instead. The size of the
buffer is determined by the number of threads used to consume
the video frames. Endlessly, the producer thread would grab
frames from the camera and overwrite the next spot in the buffer
in a cyclic manner. When all the frames from the old buffer had
been consumed, the new buffer would be pushed for
consumption. This would mean that our system would only
operate on the most recent frames produced from the video
stream.

In the end, we weren’t entirely satisfied with our system
performance. Processing the frames of an HD quality video
stream to detect barcodes is a fairly intense workload. Even by
leveraging all the cores on our system, we had a fair bit of
latency that mainly required better hardware to decrease. The
Raspberry Pi is an inexpensive, commodity computing
platform. We identified other ARM-based platforms that would
be compatible with our system but did not have enough time to
purchase and test a new board. In a comparison done with an
average, current-generation laptop, we found the performance
of our system to triple (see the figure below). With GPU-
optimized code (and the hardware to support it), we would
expect to see the performance scale even greater.

Table I: Rate of frame processing by computing platform

(same code, separate systems)

Lessons learned from ECE 570: System Software Design
were immensely useful in helping us synchronize the detection
system. The first half of the course directly taught us about
concurrency and synchronization, and in retrospect, it feels like
this could have been a personal project for the course.
The following table shows how successful our system is at
detecting items at various entry speeds. When the item is held
still until the system provides a feedback flash, it always
recognizes the barcode (however in one trial, the barcode was
not read correctly). The faster we enter the item into the cart,
the less likely it is that the barcode will be detected by the
system. This is directly due to the system latency caused by our
less than optimal performance. With better hardware and an
implementation written to optimize it, we would expect better
results.

Table II: Detection status with respect to item entry speed

D. Cloud Infrastructure

The web service for this project takes barcodes from the
embedded system as input and uses them to manage both orders
and item information in a database. To build this service, we
leveraged the offerings on Amazon Web Services’ public cloud
infrastructure [6]. Web requests made to the service and
responses from it pass through the API Gateway, which handles
and routes this information with the context it is given. Our
system logic operates on Lambda [7], a “serverless”
computational platform. It has a Python 3 runtime just like our
embedded system. Lambda manages DynamoDB [8] (our non-
relational database platform) and makes requests to an external
barcode API. To interact with DynamoDB, we use a specially-
designed object mapping library called Bloop [9]. At the
moment, we are utilizing an API called Barcode Lookup [10],
although our design allows us to change vendors with minimal
effort.

Concepts from Software Intensive Engineering course were
beneficial in the process of designing this subsystem. In order
meet our latency specification, we evaluated a number of ways
to tackle this problem. Leveraging public cloud infrastructure
was a glaringly obvious solution, but what remained to be seen
was the manner in which we would instrument platforms to
meet our requirement. Through experimentation, in
consideration with what we had learned, we determined an
optimal solution for our needs. We also found the mindset of
writing good software ‒ gained from various assignments ‒ to
be useful in our implementation. Taking care to handle cases

Max Frames Processed/Second by Platform

Platform Maximum FPS

Raspberry Pi 3 Model B 5.35

Dell Inspiron i5 Laptop 15.51

Detection Status vs. Item Entry Speed

Still Slow Normal

Correct Barcode 98% 64% 26%

Incorrect Barcode 2% 0% 0%

No Detection 0% 36% 74%

Total Trials 50 50 50

 5

for errors and exceptions, considering performance and
scalability, testing code well, and writing good documentation
were all practices that improved the development process of this
subsystem.

When we perform our integration tests on AWS
infrastructure, it returns the runtime of the code in milliseconds.
By performing numerous trials, we determined the average
runtime of our system for both a cache-hit and cache-miss
(when we are required to get info from the barcode API),
finding that the durations of both fit well within our
specification. On cache-misses, the expected runtime of our
system (updating both the item information cache and order
table) is 2.446 seconds.

E. User Interface

The User Interface is the portion of our system which will
actively communicate with the shopper to relay important
information like whether an item was successfully scanned. It
will also allow the user to view and manage their orders.

The feedback system consists of two meters of RGB 60 LED
Dotstar LEDs [14] placed along the inner, top perimeter of the
cart. The LEDS will be persistently yellow till a QR code is
scanned and the embedded system is synced to user application,
The LEDs will flash purple when it has scanned and is
attempting a network request then flash green or red depending
on the status of the request (signifying success or failure,
respectively).

We also chose to create an Android application as it is the
most popular OS worldwide and the easiest to work with.
Having the ability to easily download and access the Android
Studio IDE gives us freedom and flexibility to take the app
where we want to. The Android application enables the user to
view their balance and the list of items currently in their cart
nearly in real time. In addition, it provides us with a method to
integrate payment processing into the system.

Figure IV: Android Application Screens

 To create the application, we used Java and Android Studio
[15] which is the most popular developing environment for
android apps. By choosing the most popular platform and
developing environment we had access to lots of
documentation. No class taken by any members of the team
helped in this development directly as mobile app

development is something completely new to us. There was a
steep learning curve, especially in how to use Android Studio
and designing the mobile app hierarchy (or app flow).

The QR code shown on the app in the figure above is used
to integrate the embedded camera system on the cart to the
application. The QR encodes a unique order ID which was
created once the user entered the main item view screen.
When the camera scans this QR code it extracts the order ID
to add the items to during the shopping process. Instead of
creating another addition to integrate the app and camera
system on the cart, we took advantage of the fact our system is
already able to read different barcode types.
 From the item view screen, the user can view an items
quantity, name, and price, along with the total balance. The
user is also given options to open QR popup and cancel order
(top right), and the option to pay for the order. To meet our
specifications the app checks for new items every half-second
so that the wait time between the UI and the database is
minimal.
 To process order payments, we integrate Braintree [16], a
PayPal service, into our application. Braintree provides an
easy drop in UI from a developer standpoint that allows us to
integrate multiple payment platforms. Braintree supports
credit and debit cards, PayPal, Venmo, Apply Pay, and Google
Pay; for demonstration we setup a PayPal sandbox as shown
in the figure above. It also gives an easy desktop environment
to track/manage all order transactions and refunds. When the
user completes the payment process the LEDs cycle green on
the cart to signify the order was paid for and the user may
leave. On the app side the ‘CHECKOUT’ button changes to
‘PAID’ and the user can stay on this screen as a receipt of the
order.

To fully integrate Braintree, we had to add necessary
components to the application but also setup our own payment
server. The payment server oversees initializing users with
client tokens and securely passing payment information to
Braintree’s main servers (as illustrated in figure below), This
service is also hosted by AWS as an EC2 instance.

Figure V: Braintree Payment Processing

Software Intensive Engineering has proven to be very helpful

in this part of the project as well as we need to create clean,
concise, sustainable code. Creating an application can be a hard
process and bad code practice will only server to delay us more
and cause more issues. It was very important for the feedback
system, as there were multiple programmers working on it, that
we write clean, well commented, functional code and practice
good software development techniques like correct usage of
version control to complete this subsystem.

Item
View

Screen

QR
Popup
Screen

App
Payment
Screen

 6

III. PROJECT MANAGEMENT

Deliverable Goal Status

1 Detect barcode around front-face of
camera perspective

30” Works up to 20”

2 Display Order Info to User ✔ ✔

3 Scan-to-UI Latency 4 sec ≈ 2.5 sec
(with cache)

4 Power Generation 2.4w ≈ 3.1 W

5 Continuous Operation 18 hours 24 hours

Table III: Status of FPR deliverables

Our team consists of two Computer Systems majors (Ryan
and Jonathan) and one Electrical major (Ricardo). As a result,
we split the deliverables amongst the group by major, with the
CSEs taking deliverables one through three and Ricardo taking
deliverable four. As a small team of three, we had agreed that
each of us would work primarily alone in order to make
progress, and stay in close communication with the team with
status and updates. This would allow us to each be flexible with
our schedules and not have to meet as a group to make progress,
while also allowing for the opportunity to meet when needed to
collaborate or solicit help.

Ricardo worked on the power subsystem and his deliverable
mostly alone and with great success. When issues arose or he
needed validation for his work before continuing onwards, he
arranged meetings with Professor Robert Jackson to talk about
the circuits and electronic components of his design. In creating
his demo, Ryan assisted him by loaning an Arduino and helping
him out with the code.

Ryan also worked mostly unsupervised, completing the
second deliverable in its entirety and that of deliverables one
and three with some assistance from Jonathan. This included
writing the detection code and integrating AWS. Ryan also
completed the website in its entirety, in addition to mounting
the non-power components of the system to the cart. Getting the
feedback system operational involved creating a circuit and
writing code, both of which Jonathan helped to debug.

Jonathan worked on the user application and payment system
Independently. This included creating the user application in
android studio, UI design, designing integration with order on
embedded system, and fully integrating payment system.

Ricardo and Jonathan worked on setting up our system on a
shopping cart. They created a chassis for the motor system and
affixed it to the bottom of the cart. Jonathan designed the gears
for the power system and Ricky mounted them to the wheels.
Both worked on further securing the motors to the wheels and
making sure the chassis would not move during use.

IV. CONCLUSION

Although we were not able to complete each requirement as
we had initially planned (namely indirect detection around the
object), Team Zipcart was able to construct a system that we
believe has exceeded the base requirements and expectations of
our stakeholders (e.g. store owners and shoppers). Barcode
detection, power generation, the application interface, and

payment have all been demonstrated to work as expected for
normal use while grocery shopping. Along the way, we’ve
learned a lot and received practical advice from many people
that we can use in future endeavors, whether this may (or may
not) be the end for Zipcart.

ACKNOWLEDGMENT

Team Zipcart would like to thank our advisor, Professor
Wolf, for making the time out of his busy schedule to meet
with us weekly and provide us with invaluable advice. We
also want to thank our evaluators, Professor Krishna and
Professor Aksamija, for critiquing our project and supplying
us with thoughtful feedback. We would also like to thank
Francis Caron, Professors Hollot, Jackson, Goeckel, and
Irwin, and Shira Epstein for their valued assistance.

REFERENCES

[1] Amazon.com, Inc., Amazon Go. [Online]. Available:
https://www.amazon.com/b?node=16008589011

[2] Peapod, LLC. Peapod. [Online]. Available:
https://www.peapod.com/

[3] ada, l. (2018). Adafruit Powerboost 1000C. [online] Cdn-
learn.adafruit.com. Available at: https://cdn-
learn.adafruit.com/downloads/pdf/adafruit-powerboost-
1000c-load-share-usb-charge-boost.pdf [Accessed 20
Dec. 2018].

[4] Vishay.com. (2018). 1N5818. [online] Available at:
https://www.vishay.com/docs/88525/1n5817.pdf
[Accessed 20 Dec. 2018].

[5] Superdroidrobots.com. (2019). Adjustable 10W Step
Down Switching Regulator. [online] Available at:
https://www.superdroidrobots.com/shop/item.aspx/adjusta
ble-10w-step-down-switching-regulator/824/ [Accessed
14 May 2019].

[6] Amazon Web Services, Inc., What is AWS. [Online].
Available: https://aws.amazon.com/what-is-aws/.

[7] Amazon Web Services, Inc., AWS Lambda. [Online].
Available: https://aws.amazon.com/lambda/.

[8] Amazon Web Services, Inc., AWS DynamoDB. [Online].
Available: https://aws.amazon.com/dynamodb/.

[9] numberoverzero, “Bloop: DynamoDB Modeling.”
[Online]. Available: https://bloop.readthedocs.io/en/latest/

[10] “Barcode Lookup Homepage.” [Online]. Available:
https://www.barcodelookup.com/

[11] “Kuman 5MP 1080p HD Camera Module for Raspberry
Pi For Raspberry Pi 3 model B B A RPi 2 1
SC15.” [Online]. Available:
http://www.kumantech.com/kuman-5mp-1080p-hd-
camera-module-for-raspberry-pi-for-raspberry-pi-3-
model-b-b-a-rpi-2-1-sc15_p0063.html.

[12] OpenCV library. [Online]. Available: https://opencv.org/.
[13] ZBar barcode reader. [Online]. Available:

http://zbar.sourceforge.net/.
[14] iPixel LED Shiji Lighting “APA102 Data Sheet.”

Adafruit. [Online].Available: https://cdn-
shop.adafruit.com/datasheets/APA102.pdf

[15] Android Developers. (2019). Documentation. [online]
Available at: https://developer.android.com/docs

 7

[16] Braintree Developer Documentation. [online] Available:
https://developers.braintreepayments.com/

SDP 19 Team 26, FPR Report 8

V. APPENDIX

Figure V: System Topology

Figure VI: Component Functionalities & Relationships

 9

Table IV: Zipcart Cost Analysis

Part QTY Development Production

Shopping Cart 1 $62.99 $58.49

Raspberry Pi 3 1 $35.68 $35.00

Camera 1 $25.00 $22.50

Ribbon Cable 1 $3.95 $3.16

Stepper Motor 2 $58.62 $44.00

Adafruit Powerboost 1000C 1 $19.95 $15.96

Switching Regulator 1 $14.95 $12.93

Samsung Li-Ion 18650 Cells 4 $15.96 $11.00

PCB 1 $1.00 $0.77

Schottky Diode 16 $7.68 $2.72

Push Buttons 2 $2.18 $1.36

Voltage Level Shifter 1 $2.95 $2.51

Total

$250.91 $210.40

