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Abstract— Checkout aisles in grocery stores are inefficient. 

There are better ways to process transactions that don’t involve 
waiting in long lines for a cashier. We propose Zipcart: a system 
that employs computer vision techniques to keep track of the items 
in an order as a customer shops. It employs a centralized data store 
on public cloud infrastructure that contains order and item 
information. A smartphone interface is used by shoppers to audit 
their order and the balance of their selected items. 

I. INTRODUCTION 

Of all parts of the grocery shopping experience, the checkout 
process is the most needlessly long and frustrating. Once 
shoppers are done selecting the items they wish to purchase, 
they queue up for service from cashier attendants. This entails 
iteratively aligning the barcodes of items with a scanner, 
bagging the groceries, and navigating the point of sale (POS) 
terminal’s interface to process payment. 

Maintaining order information and payment processing are 
both tasks of the digital system. The cashier’s part in this is 
helping the system identify each item in the order and selecting 
the appropriate means for payment. Using computer vision 
techniques, this first task could also be automated, as a system 
can be trained to recognize the items that shoppers select 
through passive observation. The second task could be 
entrusted to the shopper, so long as the supported methods are 
digital-friendly (nowadays, even checks can be processed by 
digital systems using computer vision). 

There are many competing solutions in this space. Amazon 
Go [1] uses a large amount of cameras embedded in their stores 
to track what customers take out of the store, charging them 
accordingly. This approach is very costly and requires the type 
of infrastructure and technical expertise that only a company 
like Amazon has. Peapod [2] is one of a class of websites that 
offer grocery delivery as a service. Consumers avoid trips to the 
store at the expense of service charges. Additionally, 
articulating which items (out of a similar class of items) can be 
difficult, given the user interface and things like sales and 
coupons for shoppers to consider. Both solutions require large 
changes to the landscape of the grocery store. For Amazon Go, 
it’s the addition of cameras and sophisticated infrastructure to 
process video feeds. Sites like Peapod either need to employ 
warehouses for groceries or alter the layout of stores to make it 
more efficient for “grocery pickers” to sweep through the 
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landscape and fulfill orders. Zipcart necessitates retrofitting 
shopping carts – not the store. This keeps the customer 
shopping experience relatively unchanged and makes the cost 
of renovation less expensive in terms of cost and time. 

II. DESIGN 

A. Overview 

Our project seeks to present a more efficient alternative to the 
checkout aisle. It starts with a system embedded onto every 
shopping cart, with a camera mounted onto it. That camera 
identifies items as they enter or exit the cart by reading their 
barcodes. Once the system reads the barcode, it passes that 
information onto a service running in public cloud 
infrastructure (e.g. Amazon Web Services), which keeps track 
of orders and item information in a database. The shopper will 
use an interface on their smartphones (e.g. an Android 
application) to audit the order balance and items selected as they 
shop. This also enable us to process payments through a PayPal 
service called Braintree, which gives the user multiple payment 
options. 

There are some interesting challenges that arise when trying 
to utilize computer vision for this purpose. First, we need to 
scan the barcodes of items as they enter the cart. Since we do 
not require shoppers to put items into the basket in a specific 
way, they enter the cart at unpredictable angles and speeds, and 
yet we still must be able to read the barcodes with a high rate of 
accuracy. Furthermore, the barcodes must be read in a timely 
manner. Computer vision algorithms are highly resource-
intensive. The system running these algorithms has the heavy 
workload of processing image frames and detecting not only the 
barcode but direction of each item for the duration of each 
shopping trip. This must all be done nearly in real-time, as large 
latencies may confuse or upset shoppers who expect to see the 
current state of their orders on the interface as soon as possible. 

As we are not acting as store facilitators, we do not maintain 
our own database of items and their relevant information, yet 
we want our system to be able to scan and account for any item 
with a barcode. As such, another one of our challenges involves 
getting this information from an external source quickly. When 
the web service happens upon an item it has no information on, 
it must request for and cache it in a manner that complies with 
the real-time constraints of our system. Lastly, our systems 
must operate over the course of entire business days. To avoid 
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requiring maintainers to charge carts throughout the day, we 
utilize the mechanical energy exerted by shoppers pushing the 
cart to power our system. This necessitates the design of an 
efficient subsystem that can generate an adequate amount of 
power to sustain our system with the mechanical potential it 
sees. 

 
To meet the expectations of each of our stakeholders, we set 

the following project requirements: 
 

1. Recognize barcode as item is placed in cart 
2. Detect when item is removed from cart 
3. Display item list and current balances 
4. Detect unscanned items to prevent theft 
5. Sustain power for a full business day 

 
To create this design, we set a number of assumptions about 

our project. These are our specifications: 
 

1. One item entered or removed per two-second interval 
2. Barcode surface must be reasonably flat 
3. Maximum system latency of four seconds 
4. Eighteen hours of continuous operation 

 
Residing in the appendix is an enhanced block diagram 

made up of two figures that illustrate the topology of our 
system in addition to the function of each component and the 
relationships between them. 

 

B. Power 

We want our system to be self-sufficient to avoid having to 
plug it into a wall outlet – having to do so multiple times over 
the course of a day would be impractical. Our approach is to 
take advantage of the mechanical motion of the shopping cart 
and convert that into electrical energy which in turn will charge 
our lithium ion battery. The project requirements, state that our 
system must operate for a full business day, which means the 
power generated must be greater than the power consumed. 
Figure 1 shows the schematic diagram of our power circuit. The 
diagram is separated into four pieces which are the stepper 
motor, full-wave rectifier, voltage regulator, and the Adafruit 
Powerboost 1000C [3]. 

The first piece is the Vexta PX245-02B-C8 stepper motor 
which is two-phase and rated each at 6V and 0.8A. We decided 
to use a stepper motor because they work best at low speeds and 
in our application, the average walking speed of a customer is 
3mph which equates to roughly 200RPM. Heading into MDR, 
we only use one stepper motor as a proof of concept, which 
plays the role of converting mechanical energy into electrical 
energy. The power generated by a stepper motor is proportional 
to the rotational speed of the motor shaft in the form of AC.  

The second piece is converting the AC generated into DC and 
we do this through a full-wave rectifier made up of 1N5818 
schottky diodes [4]. Our stepper motor has two phases, each 
phase must be rectified which is shown in Figure 1. We added 
a 100uF capacitor at the output of the rectifier to help reduce 
voltage variations.  

This rectified voltage then feeds into our DE-SWADJ 
switching regulator [5] which takes the input voltage between 
the acceptable voltage range of 3V-30V and efficiently converts 
it into a stabilized 5V output. We chose this regulator because 
it has the capability to step-up or step-down the input voltage, 
which makes it an ideal choice in our application since the 
voltage the stepper motor generates varies dependent on speed. 
This regulator can source up to 1.5A which gives us plenty of 
headway, since we do not expect to generate more than 1A. 
Figure 2 shows the efficiency of this regulator sourcing current 
at different input voltages. In our case, the efficiency depends 
on how much voltage we generate at the input which is 
dependent on the speed of the shopping cart.  

The last piece is the Adafruit Powerboost circuit, which has 
several necessary features. It has a built-in load-sharing battery 
charger circuit which allows the Raspberry Pi to run while 
charging the lithium-ion batteries. It also features a built-in 
battery protection circuit which is necessary when charging 
lithium-ion batteries to protect from overcharging them. This 
circuit can recharge at a max rate of 1A and allows the battery 
to output more than 1A if required. 
 

 
To build this power generating circuit, we had to leverage the 

information we learned in ECE 211 and 212 to understand the 
general rules of putting together a circuit and the role each 
element plays. ECE323 and ECE324 equipped us with the 
knowledge to understand full-wave rectifiers and voltage 
regulators. 

A requirement we had to satisfy was designing and using a 
printed circuit board. We designed our printed circuit board to 
wire four stepper motors in parallel in case more power was 

Figure I: Power circuit diagram 

 
Figure II:  DE-SWADJ Switching Regulator Efficiency 
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needed but we produced plenty of power using only two motors. 
Refer to Figure 3 to see top view of our PCB design. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

For demo day, after all pieces were soldered onto the PCB, 
we generated 3.08W with two motors in parallel. See Figure IV 
to see how much power is generated at certain speeds.  
 

It is worth mentioning that the Raspberry Pi consumes 
1.4W/h while idling and 2.4W/h under a normal workload, refer 
to Figure V. We obtained these values by taking measurements 
with a KILL-A-WATT power strip. Overall, we generate more 
power than what is consumed. Also, we decided to use a 
switching regulator because it is more efficient at converting 
high input voltages and stepping down to 5V output. Figure VI 
shows a significant difference in the amount of current sourced. 
Although both produced same amount of power, more current 
is important because it charges the battery at a faster rate. 
 

 

C. Optics & Detection  

The detection subsystem is the main portion of our embedded 
system, which reads the barcodes of items as they enter the cart. 
The detection subsystem consists of two parts: optics and 
software. The optical part includes a camera placed on the far 
side of the cart facing inwards. Once an item enters the system 
and is seen by the camera, the detection algorithm processes the 
video input, using image processing techniques to locate the 
barcode in the image and extract the UPC code from it. 

 The optics system is the most important part of the detection 
subsystem as it is the greatest bottleneck. The camera must be 
able to capture the barcode in its frame no matter orientation or 
distance in respect to the camera. Cameras have a limited field-
of-view (FOV), which the barcode must be within to have a 
chance of being recognized. The camera must also have a high 
enough resolution to detect the spacing between the lines of the 
barcode. Since it has to do this at variable lenses it must also 
have an adjustable focus. Autofocus cameras take too long to 
find the correct focal length, and an adjustable focus gives us 
control in the area of the cart we want to focus on. Another 
requirement for the camera is to be compatible with our 
software libraries, which all cameras connecting to the 
Raspberry Pis CSI interface should be. When using the 
Raspberry Pi there are limited camera alternatives for its CSI 
interface, because of it we chose the best one we saw fit which 
was the Kuman 5MP camera [11] with adjustable focus that can 
stream 1080p at 30 frames-per-second (FPS). 
 For implementing computer vision, we use two libraries 
jointly. The first being OpenCV [12] an extensive and powerful 
open source computer vision library which provides us with a 
plethora of visual processing tools. The second is ZBar [13] - 
the library we use jointly with OpenCV to detect barcodes 
entering our video frame and to extract the UPC code to send to 
our database.  
 
Detection Procedure 
1. Request an order to be made in the database 
2. While True: 

a. Detect barcode in video stream from optics system 
b. Extract UPC code from barcode using PyZBar  
c. Sends UPC code to cloud service 

 
To get the detection system working as close to real-time and 

as efficiently as possible, we made a number of key revisions to 
it after MDR. The most notable was spending the week of 
spring break to rewrite the entire detection system in C++ from 
Python 3. We did this because Python programs cannot be 
parallelized on multiple CPU cores due to an implementation 
mechanism called the Global Interpreter Lock (GIL). Luckily, 
the same software stack was compatible with C++ so we were 
able to reuse the code we wrote in spirit. 

In order to simplify development on some features, we 
continued to use Python for some system functions. Using 
interprocess communication, the C++ program would call one 

Figure III: PCB Design 

Figure IV: Power Generated using Two-Motors 

Figure V: Raspberry Pi Power Consumption 

Figure VI: Regulator Comparison 
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of our Python “submodules” to make a network request or 
manipulate the LEDs, for instance. Closer to FPR, we made 
combined our individual submodules into a server that would 
listen on a specified port for requests by the C++ client. The 
server would parse them, and make network requests and 
actuate the LEDs in a dynamic manner instead of calling each 
submodule separately in order to create the same effect. A 
larger reason for this change of implementation was to make the 
submodule stateful. For instance, we solved our “double-scan” 
issue (when multiple threads pick up the same barcode in 
consecutive frames and try to make multiple requests) by 
maintaining a timestamp of the latest scan for each barcode, and 
only marking scans of the same barcode as valid if they were 
made some arbitrary time (a threshold value) after the latest 
one. By maintaining state, we were also able to make features 
such as flashing green or red depending on the success of 
network requests easier to develop. 

With the advantage of parallel processing came the issue of 
synchronizing multi-threaded operations. Through trial and 
error, we discovered that using a queue to store camera frames 
for processing meant that the system would begin to process 
older and older data until it was totally out of sync. In order to 
combat this, we used a cyclic buffer instead. The size of the 
buffer is determined by the number of threads used to consume 
the video frames. Endlessly, the producer thread would grab 
frames from the camera and overwrite the next spot in the buffer 
in a cyclic manner. When all the frames from the old buffer had 
been consumed, the new buffer would be pushed for 
consumption. This would mean that our system would only 
operate on the most recent frames produced from the video 
stream. 

In the end, we weren’t entirely satisfied with our system 
performance. Processing the frames of an HD quality video 
stream to detect barcodes is a fairly intense workload. Even by 
leveraging all the cores on our system, we had a fair bit of 
latency that mainly required better hardware to decrease. The 
Raspberry Pi is an inexpensive, commodity computing 
platform. We identified other ARM-based platforms that would 
be compatible with our system but did not have enough time to 
purchase and test a new board. In a comparison done with an 
average, current-generation laptop, we found the performance 
of our system to triple (see the figure below). With GPU-
optimized code (and the hardware to support it), we would 
expect to see the performance scale even greater. 

 
 

 
Table I:  Rate of frame processing by computing platform 

(same code, separate systems) 
 

Lessons learned from ECE 570: System Software Design 
were immensely useful in helping us synchronize the detection 
system. The first half of the course directly taught us about 
concurrency and synchronization, and in retrospect, it feels like 
this could have been a personal project for the course. 
The following table shows how successful our system is at 
detecting items at various entry speeds. When the item is held 
still until the system provides a feedback flash, it always 
recognizes the barcode (however in one trial, the barcode was 
not read correctly). The faster we enter the item into the cart, 
the less likely it is that the barcode will be detected by the 
system. This is directly due to the system latency caused by our 
less than optimal performance. With better hardware and an 
implementation written to optimize it, we would expect better 
results.  

 

 
Table II: Detection status with respect to item entry speed 

 

D. Cloud Infrastructure 

The web service for this project takes barcodes from the 
embedded system as input and uses them to manage both orders 
and item information in a database. To build this service, we 
leveraged the offerings on Amazon Web Services’ public cloud 
infrastructure [6].  Web requests made to the service and 
responses from it pass through the API Gateway, which handles 
and routes this information with the context it is given. Our 
system logic operates on Lambda [7], a “serverless” 
computational platform. It has a Python 3 runtime just like our 
embedded system. Lambda manages DynamoDB [8] (our non-
relational database platform) and makes requests to an external 
barcode API. To interact with DynamoDB, we use a specially-
designed object mapping library called Bloop [9]. At the 
moment, we are utilizing an API called Barcode Lookup [10], 
although our design allows us to change vendors with minimal 
effort. 

Concepts from Software Intensive Engineering course were 
beneficial in the process of designing this subsystem. In order 
meet our latency specification, we evaluated a number of ways 
to tackle this problem. Leveraging public cloud infrastructure 
was a glaringly obvious solution, but what remained to be seen 
was the manner in which we would instrument platforms to 
meet our requirement. Through experimentation, in 
consideration with what we had learned, we determined an 
optimal solution for our needs. We also found the mindset of 
writing good software ‒ gained from various assignments ‒ to 
be useful in our implementation. Taking care to handle cases 

Max Frames Processed/Second by Platform 

Platform Maximum FPS 

Raspberry Pi 3 Model B 5.35 

Dell Inspiron i5 Laptop 15.51 

Detection Status vs. Item Entry Speed 
 

Still Slow Normal 

Correct Barcode 98% 64% 26% 

Incorrect Barcode 2% 0% 0% 

No Detection 0% 36% 74% 

Total Trials 50 50 50 
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for errors and exceptions, considering performance and 
scalability, testing code well, and writing good documentation 
were all practices that improved the development process of this 
subsystem. 

When we perform our integration tests on AWS 
infrastructure, it returns the runtime of the code in milliseconds. 
By performing numerous trials, we determined the average 
runtime of our system for both a cache-hit and cache-miss 
(when we are required to get info from the barcode API), 
finding that the durations of both fit well within our 
specification. On cache-misses, the expected runtime of our 
system (updating both the item information cache and order 
table) is 2.446 seconds. 

E. User Interface  

The User Interface is the portion of our system which will 
actively communicate with the shopper to relay important 
information like whether an item was successfully scanned. It 
will also allow the user to view and manage their orders. 

The feedback system consists of two meters of RGB 60 LED 
Dotstar LEDs [14] placed along the inner, top perimeter of the 
cart. The LEDS will be persistently yellow till a QR code is 
scanned and the embedded system is synced to user application, 
The LEDs will flash purple when it has scanned and is 
attempting a network request then flash green or red depending 
on the status of the request (signifying success or failure, 
respectively). 

We also chose to create an Android application as it is the 
most popular OS worldwide and the easiest to work with. 
Having the ability to easily download and access the Android 
Studio IDE gives us freedom and flexibility to take the app 
where we want to. The Android application enables the user to 
view their balance and the list of items currently in their cart 
nearly in real time. In addition, it provides us with a method to 
integrate payment processing into the system. 

 

 
Figure IV: Android Application Screens 

 
 To create the application, we used Java and Android Studio 
[15] which is the most popular developing environment for 
android apps. By choosing the most popular platform and 
developing environment we had access to lots of 
documentation. No class taken by any members of the team 
helped in this development directly as mobile app 

development is something completely new to us. There was a 
steep learning curve, especially in how to use Android Studio 
and designing the mobile app hierarchy (or app flow). 

The QR code shown on the app in the figure above is used 
to integrate the embedded camera system on the cart to the 
application. The QR encodes a unique order ID which was 
created once the user entered the main item view screen. 
When the camera scans this QR code it extracts the order ID 
to add the items to during the shopping process. Instead of 
creating another addition to integrate the app and camera 
system on the cart, we took advantage of the fact our system is 
already able to read different barcode types. 
 From the item view screen, the user can view an items 
quantity, name, and price, along with the total balance. The 
user is also given options to open QR popup and cancel order 
(top right), and the option to pay for the order. To meet our 
specifications the app checks for new items every half-second 
so that the wait time between the UI and the database is 
minimal. 
 To process order payments, we integrate Braintree [16], a 
PayPal service, into our application. Braintree provides an 
easy drop in UI from a developer standpoint that allows us to 
integrate multiple payment platforms. Braintree supports 
credit and debit cards, PayPal, Venmo, Apply Pay, and Google 
Pay; for demonstration we setup a PayPal sandbox as shown 
in the figure above. It also gives an easy desktop environment 
to track/manage all order transactions and refunds. When the 
user completes the payment process the LEDs cycle green on 
the cart to signify the order was paid for and the user may 
leave. On the app side the ‘CHECKOUT’ button changes to 
‘PAID’ and the user can stay on this screen as a receipt of the 
order.  

To fully integrate Braintree, we had to add necessary 
components to the application but also setup our own payment 
server. The payment server oversees initializing users with 
client tokens and securely passing payment information to 
Braintree’s main servers (as illustrated in figure below), This 
service is also hosted by AWS as an EC2 instance. 

 
Figure V: Braintree Payment Processing 

 
Software Intensive Engineering has proven to be very helpful 

in this part of the project as well as we need to create clean, 
concise, sustainable code. Creating an application can be a hard 
process and bad code practice will only server to delay us more 
and cause more issues. It was very important for the feedback 
system, as there were multiple programmers working on it, that 
we write clean, well commented, functional code and practice 
good software development techniques like correct usage of 
version control to complete this subsystem.  

Item 
View 

Screen 

QR 
Popup 
Screen 

App 
Payment 
Screen 
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III. PROJECT MANAGEMENT 

# Deliverable Goal Status 

1 Detect barcode around front-face of 
camera perspective 

30” Works up to 20” 

2 Display Order Info to User ✔ ✔ 

3 Scan-to-UI Latency 4 sec ≈ 2.5 sec 
(with cache) 

4 Power Generation 2.4w ≈ 3.1 W 

5 Continuous Operation 18 hours 24 hours 
 

Table III: Status of FPR deliverables 
 

Our team consists of two Computer Systems majors (Ryan 
and Jonathan) and one Electrical major (Ricardo). As a result, 
we split the deliverables amongst the group by major, with the 
CSEs taking deliverables one through three and Ricardo taking 
deliverable four. As a small team of three, we had agreed that 
each of us would work primarily alone in order to make 
progress, and stay in close communication with the team with 
status and updates. This would allow us to each be flexible with 
our schedules and not have to meet as a group to make progress, 
while also allowing for the opportunity to meet when needed to 
collaborate or solicit help. 

Ricardo worked on the power subsystem and his deliverable 
mostly alone and with great success. When issues arose or he 
needed validation for his work before continuing onwards, he 
arranged meetings with Professor Robert Jackson to talk about 
the circuits and electronic components of his design. In creating 
his demo, Ryan assisted him by loaning an Arduino and helping 
him out with the code. 

Ryan also worked mostly unsupervised, completing the 
second deliverable in its entirety and that of deliverables one 
and three with some assistance from Jonathan. This included 
writing the detection code and integrating AWS. Ryan also 
completed the website in its entirety, in addition to mounting 
the non-power components of the system to the cart. Getting the 
feedback system operational involved creating a circuit and 
writing code, both of which Jonathan helped to debug. 

Jonathan worked on the user application and payment system 
Independently. This included creating the user application in 
android studio, UI design, designing integration with order on 
embedded system, and fully integrating payment system. 

Ricardo and Jonathan worked on setting up our system on a 
shopping cart. They created a chassis for the motor system and 
affixed it to the bottom of the cart. Jonathan designed the gears 
for the power system and Ricky mounted them to the wheels. 
Both worked on further securing the motors to the wheels and 
making sure the chassis would not move during use. 

 

IV. CONCLUSION 

Although we were not able to complete each requirement as 
we had initially planned (namely indirect detection around the 
object), Team Zipcart was able to construct a system that we 
believe has exceeded the base requirements and expectations of 
our stakeholders (e.g. store owners and shoppers). Barcode 
detection, power generation, the application interface, and 

payment have all been demonstrated to work as expected for 
normal use while grocery shopping. Along the way, we’ve 
learned a lot and received practical advice from many people 
that we can use in future endeavors, whether this may (or may 
not) be the end for Zipcart. 
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V. APPENDIX 

Figure V: System Topology 

 
Figure VI: Component Functionalities & Relationships 
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Table IV: Zipcart Cost Analysis 
 
 
 
 

 
 

Part QTY Development Production 

Shopping Cart 1 $62.99 $58.49 

Raspberry Pi 3 1 $35.68 $35.00 

Camera 1 $25.00 $22.50 

Ribbon Cable 1 $3.95 $3.16 

Stepper Motor 2 $58.62 $44.00 

Adafruit Powerboost 1000C 1 $19.95 $15.96 

Switching Regulator 1 $14.95 $12.93 

Samsung Li-Ion 18650 Cells 4 $15.96 $11.00 

PCB 1 $1.00 $0.77 

Schottky Diode 16 $7.68 $2.72 

Push Buttons 2 $2.18 $1.36 

Voltage Level Shifter 1 $2.95 $2.51 

Total 
 

$250.91 $210.40 


